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ABSTRACT 

A height equivalent to a theoretical plate (HETP) equation for non-linear chromatography was derived analytically based on an 
equilibrium-non-equilibrium theory. The band-broadening factors including non-linear behaviour of the adsorption isotherm and 
kinetics of adsorption-desorption and mass transfer were all considered. The contributions of sample concentration, inhibitor concen- 

tration and sample size to plate height were explicitly expressed. Some significant advantages of the proposed plate-height equation 
were demonstrated by the agreement between the experimental data from a concanavalin A-sugar system and the calculated results. In 
a limiting case, this plate-height equation can reduce to the HETP expression for linear chromatography. It is easier to use this HETP 
equation in scaling-up a non-linear chromatographic process and in determining the thermodynamic and kinetic constants character- 
izing non-linear chromatography. 

INTRODUCTION 

The theory of non-linear chromatography has 
been well developed during the last few years. 
Excellent reviews of theoretical analyses and model- 
ling methods of non-linear chromatography include 
the works of Lin et al. [l], Lee et al. [2], Cowan et al. 

[3] and Liapis [4]. The concept of non-linear chroma- 
tography takes into account the non-linear isotherm 
of equilibrium between the solute in the mobile 
phase and the solute on the inner surface of the 
adsorbent. Experimentally, samples with a very 
large volume and/or mass have to be considered in 
preparative chromatography, which can rarely be 
regarded as a linear process as interactions between 
solute molecules are unavoidable. Preparative chro- 
matography is therefore sometimes called non- 
linear chromatography [I]. In non-linear chroma- 
tography, peak shapes and band spreading are 
affected by the solute’s competition for adsorbent 
sites, sample size and various mass transfer resis- 
tances. As a result, peak shape and band spreading 
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are complex functions of the equilibrium isotherm, 
mass transfer parameters, packing properties and 
operating conditions [2]. Unfortunately, no theory 
of non-linear chromatography that encompasses all 
the usual chromatographic broadening factors is 
available. For the past few decades, the height 
equivalent to a theoretical plate (HETP) has been 
used to characterize the chromatographic efficiency 
and band broadening of the elution peak [5]. Typical 
HETP equations for linear chromatography explic- 
itly contain terms contributed by eddy diffusion, 
longitudinal molecular diffusion, film mass transfer, 
pore diffusion and surface adsorption resistances 
[6]. However, the plate-height equations generally 
found in the literature are limited to linear chroma- 
tography. In this work, a novel, closed-form plate- 
height equation for non-linear chromatography was 
developed based on an equilibrium-non-equilibri- 
um theory. The focos was placed on the effects of 
isotherm non-linearity. 

THEORY 

Equilibrium-non-equilibrium theory 
In this work the plate-height equation for non- 

linear chromatography is based on equilibrium- 
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non-equilibrium theory. In this theory, the capacity 
factor is regarded as a thermodynamic invariant and 
can be predicted by the local equilibrium model, 
whereas the plate-height is obtained from both the 
isotherm non-linearity and the departure from equi- 
librium. To obtain a plate-height expression we used 
the same assumption as made by Knox and Pyper [7] 
and Golshan-Shirazi and Guiochon [8] that the 
column HETP is the sum of two independent 
contributions: 

H = Hther + Kin (1) 

The thermodynamic contribution to the plate- 
height, Hther, results from the non-linear behaviour 
of the equilibrium isotherm. On the other hand, the 
contribution Hkin is attributed to the non-equilibri- 
um due to a finite rate of adsorption-desorption and 
mass transfer. Eqn. 1 is not exactly correct as the 
convolution theorem used to sum the contributions 
for plate-height is only valid for a linear system. It is 
nevertheless a reasonable approximation which is 
often used by investigators working in overload 
chromatography [7-IO]. Lucy and Carr [l I] recently 
demonstrated that eqn. 1 is valid under a wide range 
of chromatographic conditions. The derivation of 
each contribution in eqn. 1 is given as the follows. 

Solution of local equilibrium model and capacity 
factor 

The local equilibrium model (theory), also called 
the ideal model [8], has been thoroughly studied for 
non-linear chromatography in the measurement of 
association and inhibition constants [ 121. Golshan- 
Shirazi and Guiochon [8,13] used this model for the 
simulation of band profiles in chromatography in 
the case of a Langmuir isotherm. In a local equilibri- 
um model, the mass transfer resistances due to axial 
dispersion, film mass transfer and pore diffusion are 
assumed to be negligible and the adsorption- 
desorption interaction is assumed to be very rapid. 
As a result, the concentrations of the solute in the 
pore and in the bulk fluid are all the same and 
denoted by C. If equilibrium prevails throughout the 
column, the concentration of the solute in the mobile 
phase, C, and the concentration of the solute on the 
inner surface of the solid, q, is related by an 
equilibrium isotherm. The governing equations for a 
single solute pulse and Langmuir equilibrium are 

UO .g+& .$+(l-&)pp.$O 

s&C 
‘= 1 +K,C 

The solutions for this local equilibrium model 
with a rectangular input which has concentration Co 
and width to are obtainable by applying the method 
of characteristics. The concentrations of the solute 
at the outlet of a column of length L are given by 
~2,141 

c= & [dm-l], tf<tGt, 

I 0, otherwise (4) 

where tf and t, are the retention times of the shock 
front and the tailing edge, respectively, and given by 

tf = to + 4 [Et + (~l=&iz - 

Jm)21 (5) 
and 

t, = to + 4 [Et + (1 - 4PpqsKLl 

If 

(6) 

then the concentrations are given by 

I CO, tf < t < t, 

where 

L 
-LFko + u, 

[ 

(1 - 4PpWL 
&I + (1 + KLCO)2 

1 

t, is defined as in eqn. 6, but tf is given by 

t 
f 

= 4_ 
[ 

E 
t 

+ (1 1 4WsKL 

UO (1 + KLCO) 1 

(8) 

Substituting the concentration profiles, eqns. 4-9, 
into the definition of the first moment, 
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p1 = ‘s Ctdt/ 7 Cdt (10) 
0 0 

an expression for the first moment can be obtained. 
The capacity factor, k’, is thus given by k’ = (pr - 

4n)/Gn, where t, is the retention time of the unre- 
tained solute. After taking the integration for pl 
(i.e., eqn. 10) and assuming that the injection volume 
of the sample is relatively small compared with the 
retention volume, i.e., (uoto/Lx,)/kb -=x I, we obtain 
the capacity factor as 

k’ = &@(a) (11) 

where @(a) is a universal function presented in 
Table I and a is defined as 

touo J( ) CO 
(J= - 

L (1 - 4Pp4s 

The value of a reflects the amount of relative feed 
concentration and sample size. The parameter a can 
be defined as 

u=/(!$(p) 
a combination of three non-dimensional factors, Ko, 
(touo/L&,) and KLCo, where the last two represent the 
non-dimensional quantities of sample size and sam- 
ple concentration, respectively. The quantity PO 
represents the capacity factor in the case of zero 
concentration, i.e., the capacity factor when the 
chromatographic process is linear and no interac- 
tion occurs between solutes. As shown in eqn. 1 I, the 
capacity factor in non-linear chromatography is no 
longer a constant as it is in linear chromatography. 
The Langmuir isotherm derives from the linear 
isotherm by a universal function @ of a, due to the 
overload effect of sample concentration. This uni- 
versal function @(a) is obtained directly by integra- 
tion of the first moment using the concentration 
profiles, eqns. 4-9. As listed in Table I, the universal 
function is simply 1 - 4a/3 + a’/2 for a < 1 and 
l/(&z’) for a > 1. 

TABLE I 

UNIVERSAL FUNCTIONS OF LOADING FACTOR IN NON-LINEAR CHROMATOGRAPHY 

Universal function Application 

@(a) = 

a< 1” 

a>1 

Capacity factor: 

k’ = /$@(a) 

Y(a) = 6 

z as1 Thermodynamic contribution to HETP: 

36 
-a’- 1 
I5 

a>1 

Average equilibrium concentration: 

KrC* = @(a) 

The universal function @(a) in ref. 25 was derived based on the solution with a printed error presented in ref. 12, it should be corrected to 
that in this table. 
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capacity factor can be regarded as a thermodynamic 
invariant. qqn. 11 shows that k’/KO also can be 
represented as a function of non-dimensional sam- 
ple concentration &Co and relative sample volume, 
denoted by (touo/L~,)/~o. In contrast to the effect of 
slow kinetics, an increase in relative sample volume 
promotes a decrease in capacity factor (and elution 
time) beginning at lower solute concentration, as 
shown in Fig. 2. 

0.0 ) \ 
I I I I I 1 I 

-6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 
LOG a2 

Fig. 1. Comparison of capacity factors calculated by eqn. 11 
(solid line) and obtained from Craig model simulation given by 

Eble et al. [IS] (data points). 

To confirm the validity of eqn. 11, we compared 
the calculated results using eqn. 11 with the data 
from Craig simulation of overload separations. The 
“band” values of the capacity factor k’ from Craig 
simulation are read from Table I in the paper by 
Eble et al. [15]. Fig. 1 shows that the data from Craig 
simulations cluster about the curve predicted by 
eqn. 11. As the Craig simulations for these data are 
carried out for a broad range of conditions, we 
believe that eqn. 11 is valid not only for local 
equilibrium but also for the cases with a finite rate of 
adsorptiondesorption and mass transfer. Fig. 1 
also shows that the onset of the concentration 
overload effect seems to occur at a zz 0.08 (10% 
deviation from linear theory). 

The capacity factor can be regarded as a thermo- 
dynamic property only when the elution time is 
independent of various mass transfers, i.e., flow 
velocity. Wade et al. [16] have shown, in the case of 
infinitesimal sample volume, that the slow kinetics 
of mass transfer and adsorption-desorption tend to 
delay the decrease in elution time with increasing 
solute concentration. However, the kinetic depen- 
dence of the capacity factor is a trivial problem since 
the effect of mass transfers on capacity factor is 
relatively small, as Wade et al. [16] concluded. With 
the support of Fig. 1, we may conclude that the 

Thermodynamic contribution to the plate height 
Golshan-Shirazi and Guiochon [8] used the con- 

centration profiles (eqns. 4, 5 and 6) to obtain the 
column height equivalent to a theoretical plate. They 
called the “thermodynamic” contribution the plate 

height, Hther, which results from the non-linear 
behaviour of the equilibrium isotherm. Accordingly, 
they derived two equations for the plate number of 
an ideal model band, i.e., eqns. 38 and 40 in 
their work. Actually, the non-linear isotherm effect 
is coupled, with that of concentration overload 
through the loading factor, denoted a2 in this paper. 
The pure volume overload due to a larger injection 
interval is negligible. Other similar plate-height 
equations for the contribution of non-linear iso- 
therms are summarized in Table II. 

Using the concentration profiles given by eqns. 4 
9 and the following definition of plate height [l 11: 

H2i.L 
CL: (12) 

1.0 

O.S- 

;c” 0J3 
\ 
y 0.4- 

0.2- 

o- , , , , , , , , 

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 
LOG KL Co 

Fig. 2. Effects of sample size on the dependence of capacity 

factor on concentration, kb = (1) 0.1, (2) 0.01 and (3) 

0.001. 
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TABLE II 

EXPRESSIONS FOR THE THERMODYNAMIC CONTRIBUTION TO PLATE HEIGHT 

Source 

Golshan-Shirazi and Guiochon, eqn. 38 [8] 

Golshan-Shirazi and Guiochon, eqn. 40 [8] 

This work 

+ aZ/(KLC,) + (1 - a)’ 

Knox and Pyper [7] 

Snyder et al. [17] 

Jenke [IS] $a2 (c is an experimental constant) 

in which PL; is the second central moment, we 
obtained the thermodynamic contribution to the 
plate height as 

(13) 

where Y(a) and @(a), resulting from the integrations 
for the first moment and the second central moment 
with the application of the concentration profiles 
given by eqns. 4-9, are universal functions of the 
loading factor in non-linear chromatography as 
shown in Table I. A calculation not shown here 
revealed that eqn. 13 gives values in the middle of 
those predicted by eqns. 38 and 40 of Golshan- 
Shirazi and Guiochon [8] with the parameter values 
for typical affinity chromatography. 

The plate height defined by eqn. 12 takes advan- 
tage of the fact that the plate height can be calculated 
from the experimental chromatogram or from the 
profile predicted by the mass balance model. In 
addition, the assumption of a Gaussian chromato- 
graphic peak is not needed in applying this defini- 
tion. With the aid of computer calculations and data 
acquisition, it becomes easier to characterize a peak 
by its statistical moments, which can be measured 
from the chromatogram. 

The other expressions in Table II are either 

empirical or experimental. It should be noted that 
the notation a2 used in this paper is exactly the same 
as that of Lf in Golshan-Shirazi and Guiochon’s 
work [8]. The loading factor a2 also is equal to wX/ws, 
the ratio of the mass of solute injected to the 
saturation capacity of the column [7,17,18]. The 
larger is u2, the greater is the concentration overload 
effect. We may conclude that the plate height 
resulting from the non-linear behaviour of the 
equilibrium isotherm is the contribution of concen- 
tration overload through a loading factor. 

Plate height due to non-equilibrium 
TO obtain &in in eqn. 1, we should reconsider the 

mass balance model as represented by eqns. 2 and 3. 
When a Langmuir kinetics relationship is used to 
account for a finite rate of adsorption-desorption 
kinetics, eqn. 3 should be replaced by 

a4 
(14) 

while eqn. 2 remains unchanged. If adsorption- 
desorption processes are slow compared with all 
diffusion processes, the rate parameters k,* and k$ in 
eqn. 14 are the true adsorption and desorption rate 
constants, respectively. Experimentally, Chase [19] 
and Arnold and Blanch [20] used the model eqns. 2 
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and 14 successfully to interpret the results of affinity 
chromatography for protein purification. 

Whenever the mass transfer contribution is com- 
parable to the adsorption-desorption contribution, 
the rate constants k,* and kz should be regarded as 
the effective overall rate constants that combine the 
effects of mass transfer and chemical kinetic limita- 
tions of the binding interaction. For this reason, the 
model including eqns. 2 and 14 is called the lumped 
rate constants model. Based on the “linear driving 
force” concept of Hiester and Vermeulen [21], as 
noted by Arnold and Blanch [20], combination of 
the mass transfer rate constant k,,,, and the true 
desorption rate constant kd yields the following 
effective desorption rate constant: 

(15) 

where 

k mass (16) 

Wade et al. [16] also obtained a similar relation- 
ship between true and effective rate constants. 
However, in the following derivation of plate height, 
k$ is regarded as independent of concentration, 
which is believed to be realistic in ion-exchange and 
affinity chromatography. 

The lumped rate constants model (eqns. 2 and 14) 
has often been used for the simulation of chroma- 
tography operated in the frontal mode and in the 
zonal mode. Although the lumped rate constants 
model with different kinds of boundary conditions 
has been solved and reported by Thomas [22], 
Hiester and Vermeulen [21], Goldstein [23], Aris and 
Amundson [ 141, Chase [ 191, Arnold and Blanch [20] 
and Wade et al. [16], the calculations for the 
moments can only be done numerically and an 
explicit form of the plate-height expression is not 
possible. 

In this work, an extension of the non-equilibrium 

theory developed originally by Giddings [24] was 
made to obtain the plate height due to the non-equi- 
librium by starting from the lumped rate constants 
model (eqns. 2 and 14). According to the non-equi- 
librium theory [24], the solute in a chromatographic 
zone is slightly out of equilibrium owing to the 
moving concentration gradient and the inability of 

equilibration to keep up with it. Plate height can be 
related to the extent of departure from equilibrium, 
as the departure is found to be directly responsible 
for zone (band) spreading. By following the ap- 
proach developed by Giddings, the plate height 
resulting from non-equilibrium for non-linear chro- 
matography with a Langmuir isotherm was derived 
as eqn. A10 in the Appendix. It is a function of 
equilibrium concentration in the mobile phase, C*. 
A detailed derivation is given in the Appendix. An 
average equilibrium concentration was then intro- 
duced to express C* by taking the average value of 
solute concentrations between the elution times for 
the shock front and the tailing edge when the 
chromatographic process is in equilibrium, i.e., 

C* = ICdtl fSdt (17) 
tf ff 

where the concentration profile C is given by eqns. 4 
and 7. Eqn. 17 results in the third universal function 
0(a) as presented in Table I. Accordingly, the kinetic 
contribution to the plate height is given by 

(18) 

Plate-height equation for non-linear chromatography 
Finally, substituting eqns. 13 and 18 into eqn. 1 we 

obtained the following plate-height equation for 
non-linear chromatography: 

2Uo 1 Ml + WI -.-. 
et k: {kb + [I + f3(a>]‘)z (I’) 

Clearly, when the feed concentration Cc, ap- 
proaches zero, both e(a) and Y(u) vanish, and 
eqn. 19 becomes the plate height due to slow kinetics 
in linear chromatography. It is noted that eqn. 19 is 
so far the only explicit expression of plate height for 
non-linear chromatography. Further, it seems useful 
in optimizing and scaling up non-linear chromato- 
graphic processes. 

In eqn. 19, we used an effective rate constant kz to 
lump the effects of slow adsorption-desorption and 
all mass transfers but not axial dispersion, and 
assumed that k$ is independent of sample con- 
centration. This assumption is realistic when the 
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adsorption-desorption contribution to the peak 
spreading outweighs the mass transfer contribution, 
as in ion-exchange and affinity chromatography. 
We may let No denote the plate number determined 
under linear conditions, and rewrite eqn. 19 as 

1 1 1 /HkinX~ 
N -  Nthe~ + Noo I I\ Ho / 

(20) 

where 

//kin [1 + kb]a[1 + O(a)] 
Hoo - {k~) + [1 + 0(a)12} 2 (21) 

In eqn. 20, Ho = L/No and Hther = L/Nther. The 
plate number predicted by eqns. 20 and 21 is 
comparable to that obtained from the lumped rate 
constants model and calculated by Craig simulation. 
A general agreement was found from the plot of 
N/No values calculated by eqns. 20 and 21 versus the 
simulated N/No by the Craig model as shown in 
Fig. 3. The Craig simulation data are read from the 
"band"  values of N/No in Table I in the paper by 
Eble et al. [15]. 

Obviously, eqn. 20 is slightly different from that 
given in the literature by a factor Hkin/Ho. The 
contribution of this factor is significant provided 
that the plate height due to kinetic non-equilibrium 
is much greater than that due to isotherm non- 
linearity. This case occurs when the rate of adsorp- 
tion and desorption kinetics are slow. In all in- 
stances, the plots of N versus the loading factor a 2 

f.O 

T 0.8 

~ 0.6 

+t  ~°1~ 0.4. 

0.2. 

0. O 
0 

072 
~o 

o o/ 
o o 

Oo 

o °° o 

o.'e o/4 0?6 0)8 ,.'o 
N/No 

Fig. 3. Comparison of  N/No simulated from Craig model, as in 
Table I in the paper by Eble et al. [15] (abscissa) and the values 
calculated by eqns. 20 and 21 (ordinate). 

according to eqns. 20 and 21 will reveal that the plate 
number decreases with increasing loading factor in a 
manner very similar to that previously published by 
Colin [10] and Golshan-Shirazi and Guiochon [8]. 

For multi-component systems, the afore-men- 
tioned plate-height equations and the universal 
functions presented in Table I are still useful with 
minor modification. For example, consider a com- 
peting free (soluble) inhibition system in an affinity 
process [25,26]. A solute inhibitor (I), which com- 
petes with an immobilized ligand for the desired 
macromolecular compound, is present in the sample 
solution pre-equilibrated buffer. Assuming a con- 
stant concentration of I throughout the column 
during elution stage, all the above-mentioned equa- 
tions are valid when the limiting capacity factor for 
the desired solute k{~ is replaced by k'o/(1 + KICO, 
where C~ and K~ are the concentration and the 
binding constant, respectively, of inhibitor I. Ac- 
cording to ref. 25, the limiting capacity factor in the 
definition of a should also be changed to k'o/(1 + 
KIC,). 

EXAMPLE 

The use of this plate-height equation is demon- 
strated by the following example. Consider the 
adsorption of sugar, p-nitrophenyl-~-D-mannopyra- 
noside (pNp)-mannoside, on to the inner surface of 
50-pm concanavalin A (Con A)-silica packed in a 
column (5.0 cm × 0.3 cm I.D., 38 mg/g Con A, pore 
diameter 42 nm, ~ = 0.5, % = 0.6). The chromato- 
graphic system is operated at a flow-rate of 1 ml/min 
with an injection volume of 25 #1 (to = 1.5 s, 
u0 = 0.236 cm/s). Variation of the experimental 
capacity factor and total plate height with injected 
concentration has been reported by Muller and Carr 
[27]. Using the equations derived in the previous 
section by assuming the capacity factor k' to be 
independent of mass transfer, the best fitting of the 
experimental and calculated capacity factors yielded 
kb = 13 and KL = 1.6. 104 lmol- 1. It was found that 
this fitted value of the binding constant KL is iden- 
tical with that reported by Muller and Carr [28]. The 
calculated plate height is obtained using eqn. 19 
with a constant effective desorption constant k* = 
0.1 s-1. The assumption employed here that the 
kinetics ofadsorption-desorption are rate limiting is 
realistic in affinity chromatography, especially when 
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EXPERIMENTAL AND THEORETICAL VALUES OF THE CAPACITY FACTOR AND PLATE HEIGHT FOR THE 

EXAMPLE AS DESCRIBED IN THE TEXT” 

Experimental 

k HETP (pm) 

k’ calculated using eqn. 11 
(kb = 13,K, = 1.6. lo4 lmol-i) 

Equilibrium-non-equilibrium theory Lumped rate 
constants model: 

H tiler Hid. HETP (pm) HETP brn) 

0.1 11.4 4050 11.26 119 4063 4182 3980 

0.2 10.6 4280 10.58 253 4127 4380 4110 

0.4 9.7 5400 9.67 551 4219 4770 4350 

0.6 9.2 4710 8.99 882 4292 5174 4560 
0.8 8.4 5630 8.45 1243 4354 5597 4850 
1.0 8.0 6090 7.99 1633 4409 6042 5180 

’ Theoretical values were generated from the best-fit parameters 

the immobilized ligand is a macromolecule such as 
Con A in this example. As suggested by Hethcote 
and DeLisi [29] and Arnold and Blanch [20], the 
mass transfer contribution can be reduced by immo- 
bilizing the macromolecular species and allowing 
the small molecules to diffuse to the binding site. The 
results are summarized in Table III for comparison. 
Obviously, the calculated HETP agrees with the 
experimental data. Also, this rate constant k: is 
close to the value of kd reported by Muller and Carr 
[28] (0.3 s - ‘), but unfortunately they incorrectly 
took the HETP equation of linear chromatography 
from a paper by Horvath and Lin [6] for this non- 
linear system. Table III indicates that the equilibri- 
um-non-equilibrium theory is comparable to the 
lumped rate constants model in obtaining HETP to 
take account of band spreading. However, the 
lumped rate constants model predicted lower HETP 
values than the experimental values. The advantage 
of the proposed HETP equation based on the 
equilibrium-non-equilibrium theory, however, is 
very clear: it is simpler and easier to use. 

Plots of the experimental and calculated HETP 
versus concentration are shown in Fig. 4. The 
calculated HETP is generated by eqn. 19 with the 
parameter values from the best fitting. It is clear that 
the HETP starting from a limiting value in the linear 
region at zero concentration increases with sample 
concentration. This is because at higher sample 
concentration, the fraction of unbound solutes 
increases and tends to be eluted rapidly. Further, the 
solute concentrations are scattered over the entire 
column and serious mixing is induced by concentra- 

tion gradients, which increase the plate height. Plots 
of HETP versus linear velocity u. with various 
sample concentrations are shown in Fig. 5. A higher 
plate height accounts for much of the inefficiency of 
the chromatographic column when a higher concen- 
tration is applied. It is clear that the effect of 
concentration cannot be ignored even when the 
concentration is not really high. The larger is I&_, the 
much pronounced is the contribution of concentra- 
tion overload. However, at very high concentra- 
tions, the concentration effect on the plate height 
may be traded off by the high flow velocity. The 
reason may be that a large fraction of the solute does 
not adsorb immediately, and elutes together at the 

2000012 

CO WC 

Fig. 4. Effects of sample concentration on plate height with kb = 
13, KL = 1.6 . lo6 lmol-i, L = 5 cm, at = 0.8, Q = 0.236 cm/s, 
20 = 1.5 s and k,* = 0.1 s - I. Calculated values were generated by 
eqn. 19. 
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Fig. 5. Plate height as a function of flow velocity in non-linear chromatography. Parameter values are L = 5 cm, E, = 0.8, lo = 1.5 s, 

u. (cm/s) 

kb= 13 and k,*-= 0.1 s-‘. 

dead volume under the condition of heavy concen- 
tration overload. Regardless the variation of plate 
height at high flow velocities, it is suggested that the 
effective desorption rate constant can be measured 
from the slope of these plots in the region of low 
velocity. 

As shown in this example, one of the greatest 
advantages of the equations obtained in this work is 
that they provide a easier way for the determination 
of the thermodynamic constant KL and rate con- 
stants. Experimentally, by varying the amount of 
sample mass or sample concentration, one can easily 
obtain measurements of the site density (kb/KL) and 
equilibrium binding constant by using eqn. 11. 
Further, eqn. 19 provides a theory for the estimation 
of the effective desorption rate constant. 

CONCLUSIONS 

In non-linear chromatography, the sample con- 
centration tends to sharpen the front of the sample 
pulse and to prolong the tailing. If the time interval 
of sample injection is relatively small compared with 

the total retention time, the effect of sample concen- 
tration on the capacity factor can be estimated using 
the local equilibrium model. The contribution of 
concentration to plate height due to the isotherm 
non-linearity is also obtainable from the same 
model. In the limiting case of zero sample concentra- 
tion, the plate height due to a non-linear isotherm 
vanishes. This thermodynamic plate height contrib- 
uted by isotherm non-linearity is given by eqn. 13. 

A plate-height equation for non-linear chroma- 
tography (under isocratic condition) has been de- 
rived based on the equilibrium-non-equilibrium 
theory. With this theory, the retention time is 
assumed to be identical with that of the local 
equilibrium model and the capacity factor is calcu- 
lated from this retention time. Both the departure 
from equilibrium contributed by slow adsorption- 
desorption and mass transfer and the self-sharpen- 
ing and tailing effect of concentrations due to non- 
linear isotherms are responsible for band broaden- 
ing (zone spreading). The overall plate-height equa- 
tion, eqn. 19, accounts for this band broadening. 
For a multi-component inhibition system, the con- 
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tribution of competing inhibitor concentration to 
plate height is via the limiting capacity factor of the 
desired solute & and the loading factor a. 

An example of non-linear chromatography has 
been used to demonstrate the application of the 
plate-height equation derived in this work. A com- 
parison of calculated HETP and simulation results 
from the Craig model and the lumped rate constants 
model showed general agreement. Finally, it should 
be noted that the plate-height equation derived in 
this work can be easily used in scaling-up chroma- 
tography of biomolecules and in determining the 
thermodynamic and kinetic constants characteriz- 
ing non-linear chromatography. 

SYMBOLS 

C 

co 
Cl 
G 

c 
dP 
D* 

Q 
H 
k 

kb 

ka 
kd 
k3 
kf 

Ki 
KL 

L 
N 

9 
4s 

t 

trill 

to 

Concentration of solute in 
mol 1-l 
Sample concentration, mol 

bulk fluid phase, 

1-l 
Concentration of inhibitor, mol l- ’ 
Total concentration of solute in mobile phase, 
= &,C 
Total concentration of solute in stationary 
phase, = (1 - e)pPq 
= c, -I- c, 
Diameter of adsorbent particle, cm 
Apparent diffusion coefficient, cm2 s-l 
Pore diffusivity of solute, cm2 s- ’ 
HETP, plate height, cm 
Capacity factor 
Capacity factor at zero sample concentration, 
= (1 - s)ppq&.Ist 
Adsorption rate constant, lmol-’ s-l 
Desorption rate constant, s- r 
Effective desorption rate constant, s- ’ 
Fluid film mass transfer coefficient of solute, 
cm s-l 
Inhibition constant, Imol-’ 
Equilibrium bindingconstant, = k,/kd,lmol-’ 
Length of the column, cm 
Plate number, = L/H 
Sorbate concentration, mm01 (g particle)-l 
Maximum number of available binding sites, 
mm01 (g particle) - ’ 
Time, s 
Retention time of the unretained solute, 
= EtL/Uo, S 

Time interval of sample injection, s 
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24 Chromatographic velocity, = u~/E~, cm s- ’ 
u* Velocity of solute in local equilibrium, cm s- ’ 

UO Fluid superficial velocity, cm s- ’ 
Z Linear coordinate along the packed bed, cm 

Greek letters 
E Void fraction of packed bed, equal to the 

volume outside the particles divided by the 
empty column volume 

Et Total void fraction in column 

PP Particle density, the density of packed station- 
ary phase in column, g (cm3 particle)- ’ 

Fl First moment, s 

!& Second central moment, = 7 C(t - ,ul)2dt/ 

i Cdt, s2 
0 

n 

E Parameter of departure from equilibrium 

Superscript 
* Value estimated at equilibrium 
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APPENDIX 

Define C,,, and C, as the total concentrations of 
the solute in the mobile phase and the stationary 
phase, respectively. We can rewrite eqns. 2 and 14 as 

Cl - Eh’qs - cs K,C, (Al) 

Ei 1 I 
where u = u~/E, and KL = k,*/k,*. 

When the net rate of mass transfer between phases 
through adsorption and desorption approaches zero, 
we have 

(1 - 4PP4S - c,* 1 I K c* 
L m W) 

Ei 

Obviously, the isotherm is Langmuiran. If we 
substitute C,$(l + E,) for C,,, and C,*(l + E,) for C,, 
we then have 
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S m = k$Cs?=E, - 7 [(l - &)q,C: + 

P2 - C,*C;] E, (A3) m 

where the E terms represent the departures from 
equilibrium. In eqn. A3, the higher order term E,E, 
has been ignored and E, relates to E, by E, = -E, . 
CgjC,*. With eqns. A2 and A3, we have 

S,,, = -k: C; + : [(l - E)ppqsC; + 
i 

Cz2 - C,*C’y 
1 

E, (A4) 

When the near-equilibrium approximation ap- 
plied, S, can also given by 

645) 

where we have used the relationship of mass balance 
in local equilibrium: 

(A6) 

In eqn. A6, U* is given by U* = u/[l + kb(l + 
&,C$,/E~)-~]. It is noted that kb = (1 - .c)ppqsKL/ct. 

Following the preceding formulation of plate 
height by Giddings [24], we define a mass flux related 
to U, J = C,u. The zone spreading originates in the 
AJ term and AJ = J - J* = C&,,U. Let C denote 
the sum of C,,, and C,. Applying the equilibrium 
relationship of Cg and C,*, we have 

kb 
l+ (1 + KLC;/~,)2 1 

acz u acg 

a2 - iIF . aZ (A7) 

For the total concentration C, we may make a 
mass balance with an additional dispersion term: 

where D* is the apparent diffusion coefficient and is 
given by D* = -AJ/(aC/dz). By definition, the 
plate height is related to the apparent diffusion 
coefficient D* by 

2D* 
HZ--= 

- 2c;E,u 

u* u*(aC/az) 
649) 

Solving for E, by equating eqns. A4 and A5 and 
substituting it into eqn. A9, we finally obtain the 
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plate height Has a function of equilibrium concen- 
tration and lumped rate constant: 

2(u - u*> 

H = k$[l + kb + (KLC;/ct) - (KLC:/E~)] 
(AlO) 

It is noted that Cg = .s,C* and C,* = (1 - 

s)p,q,&C*l(l + &C*). 
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